TORSION IN MAGNITUDE HOMOLOGY OF GRAPHS

Radmila Sazdanovic

NC State University

AMS Fall Western Virtual Sectional Meeting
AMS Special Session on Inverse Problems: In Memory of Professor Zbigniew Oziewicz
24 October 2021

GRAPHS AS METRIC SPACES

DEfinition

A graph $G=(V, E)$ is a finite collection of vertices and edges (unordered pairs of vertices) with no loops and no multiple edges.

- Assigning unit length to each edge, a graph becomes a metric space with $d(x, y)=$ length of a shortest path joining x and y.
- E.g. $d\left(a_{1}, a_{5}\right)=2, d\left(a_{0}, a_{3}\right)=3$ while $d\left(b_{i}, b_{j}\right)=\delta_{i j}$.

MAGNITUDE POWER SERIES OF A GRAPH

Definition (LEinster)

Let G be a graph with (ordered) vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The magnitude $\# G=\#(q)$ of a graph G is the sum of the entries of the matrix $Z_{G}^{-1}(q)$, where

$$
Z_{G}(q)=\left[\begin{array}{cccc}
q^{d\left(v_{1}, v_{1}\right)} & q^{d\left(v_{1}, v_{2}\right)} & \ldots & q^{d\left(v_{1}, v_{n}\right)} \\
q^{d\left(v_{2}, v_{1}\right)} & \ddots & & q^{d\left(v_{2}, v_{n}\right)} \\
\vdots & & & \vdots \\
q^{d\left(v_{n}, v_{1}\right)} & q^{d\left(v_{n}, v_{2}\right)} & \ldots & q^{d\left(v_{n}, v_{n}\right)}
\end{array}\right]
$$

Observation (Leinster): $Z_{G}(0)=I$, so $\operatorname{det}\left(Z_{G}(q)\right)$ is invertible in $\mathbb{Z}[[q]]$. Hence $\#(G)(q)$ is a power series in q with integral coefficients.

MAGNITUDE OF COMPLETE AND ICOSAHEDRAL

GRAPHS

$$
\# K_{n}(q)=\sum_{\ell=0}^{\infty} n(1-n)^{\ell} q^{\ell}
$$

$$
\# G(q)=12-60 q+240 q^{2}-912 q^{3}+\cdots
$$

PROPERTIES OF MAGNITUDE

Magnitude is a generalization of cardinality of sets to graphs:
Theorem (LEinster)
Let G and H be any graphs. Then, $\#(G \square H)=\#(G) \cdot \#(H)$

Theorem (LEinster)
Let $\left(G ; H_{1}, H_{2}\right)$ be a projecting decomposition of a graph G. Then, $\#(G)=\#\left(H_{1}\right)+\#\left(H_{2}\right)-\#\left(H_{1} \cap H_{2}\right)$.

You might be familier with the fact that alternating sum formulas are often a good starting point for categorification: it is an approach used to lift Jones (Kauffman bracket) polynomial to Khovanov homology.

CATEGORIFYING MAGNITUDE BY HEPWORTH AND

WILLERTON

THEOREM (LEINSTER)

Let G be a graph. Then, the coefficient of q^{ℓ} in $\# G(q)$ is given by

$$
[\# G(q)]_{q^{\ell}}=\sum_{k=0}^{\infty}(-1)^{k}\left|\left\{x=\left(x_{0}, x_{1}, \ldots, x_{k}\right) \mid x_{i} \neq x_{i+1}, \ell(x)=\ell\right\}\right|
$$

For each $\ell \geq 0$ define a chain complex $\left(\mathrm{MC}_{*, \ell}(G)\right)$ as follows:
Chain groups: $M C_{k, \ell}(G)=\mathbb{Z}\left\langle\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{k}\right) \mid \ell(\mathbf{x})=\ell\right\rangle$

Differential: $\quad \partial: M C_{k, \ell}(G) \rightarrow M C_{k-1, \ell}(G)$

$$
\partial=\sum_{i=1}^{k-1}(-1)^{i} \partial_{i}
$$

$\partial_{i}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\left\{\begin{array}{cl}\left(x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{k}\right) & \text { if } \ell\left(x_{0}, \cdots, \hat{x}_{i}, \cdots, x_{k}\right)=\ell \\ 0 & \text { otherwise. }\end{array}\right.$

MAGNITUDE HOMOLOGY

Theorem (Hepworth, Willerton)

The magnitude homology of a graph G is the bigraded abelian group $\mathrm{MH}(G)$ given in bigrading (k, ℓ) by $\mathrm{MH}_{k, \ell}(G)=H_{k}\left(\mathrm{MC}_{*, \ell}\right)$. Magnitude homology is an invariant of graphs with graded Euler characteristic the magnitude power series.

$$
\begin{aligned}
\chi_{q}\left(\mathrm{MC}_{*, *}(G)\right) & =\sum_{\ell \geq 0}\left(\sum_{k \geq 0}(-1)^{k} \operatorname{rank}\left(\mathrm{MH}_{k, \ell}(G)\right)\right) \cdot q^{\ell} \\
& =\sum_{\ell \geq 0}\left(\sum_{k \geq 0}(-1)^{k} \operatorname{rank}\left(\mathrm{MC}_{k, \ell}(G)\right)\right) \cdot q^{\ell} \\
& =\# G(q) .
\end{aligned}
$$

Lifting properties of magnitude To magnitude

HOMOLOGY

Theorem (Hepworth, Willerton)

Let G and H be any graphs. Then, magnitude homology groups satisfy a split exact sequence

$$
\begin{aligned}
0 \rightarrow & M H_{*, *}(G) \otimes M H_{*, *}(H) \rightarrow M H_{*, *}(G \square H) \rightarrow \\
& \rightarrow \operatorname{Tor}_{1}^{\mathbb{Z}}\left(M H_{*+1, *}(G), M H_{*, *}(H)\right) \rightarrow 0
\end{aligned}
$$

Theorem (Hepworth, Willerton)
Let $\left(G ; H_{1}, H_{2}\right)$ be a projecting decomposition of a graph G. Then, magnitude homology groups satisfy a split exact sequence

$$
0 \rightarrow M H_{*, *}\left(H_{1} \cap H_{2}\right) \rightarrow M H_{*, *}\left(H_{1}\right) \oplus M H_{*, *}\left(H_{2}\right) \rightarrow M H_{*, *}(G) \rightarrow 0 .
$$

TORSION IN MAGNITUDE HOMOLOGY

Hundreds of computations in Sage, inspired Hepworth and Willerton to conjecture magnitude homology to be torsion free for every graph.

Theorem (Kaneta, Yohsinaga)
The following graph has \mathbb{Z}_{2} torsion:

THE KANETA-YOSHINAGA CONSTRUCTION

Definition (Kaneta-Yoshinaga graphs)

Let K be a simplicial complex, $P(K)$ be the face poset of K, and let $\hat{P}(K)$ be the poset obtained by augmenting $P(K)$ with unique minimal and maximal elements $\hat{0}$ and $\hat{1}$, respectively. The Kaneta-Yoshinaga graph associated to K is the graph $G(K)$ obtained as the underlying graph of the Hasse diagram of $\hat{P}(K)$.
E.g.

SINGULAR HOMOLOGY AND MAGNITUDE HOMOLOGY

Theorem (Kaneta, Yohsinaga)
Let K be a triangulation of a manifold M and let $\ell=d(\hat{0}, \hat{1})$ in $\hat{P}(K)$. For each $k \geq 1$ there is an embedding,

$$
\widetilde{H}_{k-2}(M) \hookrightarrow \mathrm{MH}_{k, \ell}(G(K)) .
$$

Observation

Let K be a triangulation of an m-dimensional manifold M. If K contains a single m-simplex, we obtain embeddings

$$
\tilde{H}_{k-2}(M) \hookrightarrow \mathrm{MH}_{k, m+1}(G(K))
$$

Otherwise, we obtain embeddings $\widetilde{H}_{k-2}(M) \hookrightarrow \mathrm{MH}_{k, m+2}(G(K))$.

\mathbb{Z}_{2} TORSION ON THE SECOND DIAGONAL OF MAGNITUDE HOMOLOGY

Theorem (S.-Summers)
For any odd integer $k \geq 3$, there is a graph G such that $\mathrm{MH}_{k, k+1}(G)$ contains a subgroup isomorphic to \mathbb{Z}_{2}.

Proof idea:

- Take K to be a triangulation of $\mathbb{R P}^{k-1}$
- Use the embedding

$$
\widetilde{H}_{k-2}\left(\mathbb{R} \mathbb{P}^{k-1}\right) \hookrightarrow \mathrm{MH}_{k, k+1}(G(K))
$$

described on the previous slide.

$\mathbb{Z}_{p^{r}}$ TORSION IN MAGNITUDE HOMOLOGY

Definition (GEneralized Lens space)

Let $S^{2 n+1}=\left\{\left(z_{0}, z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}: \sum_{i=0}^{n}\left|z_{i}\right|^{2}=1\right\}$ be the unit sphere in \mathbb{C}^{n+1}. Let $p, q_{1}, q_{2}, \ldots, q_{n}$ be integers with $\operatorname{gcd}\left(p, q_{i}\right)=1$ for each $1 \leq i \leq n$. Consider the action of \mathbb{Z}_{p} on $S^{2 n+1}$ defined for each $g \in \mathbb{Z}_{p}$ by $g \cdot\left(z_{0}, z_{1}, \ldots, z_{n}\right)=\left(z_{0} e^{\frac{2 \pi i g}{p}}, z_{1} e^{\frac{2 \pi i g q_{1}}{p}}, z_{2} e^{\frac{2 \pi i g q_{2}}{p}}, \ldots, z_{n} e^{\frac{2 \pi i g q_{n}}{p}}\right)$.
The lens space $L\left(p, q_{1}, q_{2}, \ldots, q_{n}\right)$ is the quotient space $S^{2 n+1} / \mathbb{Z}_{p}$.

Theorem (S.-Summers)

For each prime p and positive integer r, there is a graph G with $\mathbb{Z}_{p^{r}}$ torsion in $\mathrm{MH}(G)$. More specifically, for integers $n, r \geq 1$ and each prime p, there is a graph G such that $\mathrm{MH}_{3,2 n+3}(G)$ contains $\mathbb{Z}_{p^{r}}$ torsion.

Proof idea: $L\left(p^{r}, q_{1}, q_{2}, \ldots, q_{n}\right)$ is a triangulable $(2 n+1)$-dimensional manifold with fundamental group isomorphic to $\mathbb{Z}_{p^{r}}$.

TORSION IN MAGNITUDE HOMOLOGY OF NON-KY

GRAPHS

Theorem (S.-Summers)

There is a graph G, not obtained from a triangulation via the Kaneta-Yoshinaga construction, with torsion of order two in magnitude homology:

FAMILIES OF GRAPHS WITH TORSION IN MAGNITUDE

HOMOLOGY

DEFINITION (PACHNER)

Let K be a triangulation of an m-manifold M. Let $A \subset K$ be a subcomplex of dimension m, and let $\varphi: A \rightarrow A^{\prime} \subset \partial \Delta^{m+1}$ be a simplicial isomorphism. The Pachner move associated to the triple (K, A, φ) is the adjunction space

$$
P_{\varphi} K:=(K-A) \sqcup_{\varphi}\left(\partial \Delta^{m+1}-A^{\prime}\right) .
$$

Pachner moves on simplicial complexes of dimension 2.

FAMILIES OF GRAPHS WITH TORSION IN MAGNITUDE

HOMOLOGY

Theorem (S.-Summers)

Let K and K^{\prime} be triangulations of a manifold M related by a finite sequence of Pachner moves. For each $k \geq 1$, both $\mathrm{MH}_{k, *}(G(K))$ and $\mathrm{MH}_{k, *}\left(G\left(K^{\prime}\right)\right)$ have a subgroup isomorphic to $\widetilde{H}_{k-2}(M)$.

THEOREM

Let $k \geq 3$ be an integer. There exist infinitely many distinct classes of graphs whose magnitude homology contains \mathbb{Z}_{2} torsion in bigrading $(k, k+1)$.

Proof idea: Form a nested sequence of triangulations of $\mathbb{R} \mathbb{P}^{k-1}$ by repeated application of Pachner moves, then appeal to the Kaneta-Yoshinaga embedding.

FAMILIES OF GRAPHS WITH TORSION IN MAGNITUDE HOMOLOGY

Theorem (S.-Summers)

Let p be a prime and $n, m \geq 1$ integers. There exist infinitely many distinct isomorphism classes of graphs whose magnitude homology contains $\mathbb{Z}_{p^{r}}$ torsion in bigrading $(3,2 n+3)$.

Proof idea: Form a nested sequence of triangulations of generalized lens spaces $L\left(p^{r}, q_{1}, q_{2}, \ldots, q_{n}\right)$ by repeated application of Pachner moves, then appeal to the Kaneta-Yoshinaga embedding.

FAMILIES OF GRAPHS WITH TORSION IN MAGNITUDE

HOMOLOGY

Theorem (S.-Summers)

Let M be any finitely generated finite abelian group. Then, there exists a graph G whose magnitude homology $\mathrm{MH}(G)$ contains a subgroup isomorphic to M.

Proof idea: By the fundamental theorem of finitely generated abelian groups, $M \cong \mathbb{Z}^{r} \oplus \mathbb{Z}_{p_{1}^{r_{1}}} \oplus \mathbb{Z}_{p_{2}^{r_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{m}^{r_{m}}}$. The homology groups of a connected sum of manifolds is isomorphic to the direct sum of their respective homology groups. Therefore,

$$
H_{1}\left(L\left(p^{r_{1}}, 1\right) \# L\left(p^{r_{2}}, 1\right) \# \cdots \# L\left(p^{r_{m}}, 1\right)\right) \cong \mathbb{Z}_{p_{1}^{r_{1}}} \oplus \mathbb{Z}_{p_{2}^{r_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{m}^{r_{m}}}
$$

Let K be a triangulation of $L\left(p^{r_{1}}, 1\right) \# L\left(p^{r_{2}}, 1\right) \# \cdots \# L\left(p^{r_{m}}, 1\right)$, then appeal to the Kaneta-Yoshinaga embedding.

THE MAIN DIAGONAL OF MAGNITUDE HOMOLOGY

Theorem (S.-Summers)

Let G be a graph with vertex set V and edge set E. If G has no 3 - or 4-cycles, then the first diagonal in the magnitude homology of G satisfies

$$
\mathrm{MH}_{k, k}(G) \cong \begin{cases}\mathbb{Z}^{|V|} & k=0 \\ \mathbb{Z}^{2|E|} & k>0\end{cases}
$$

Proof idea: Show $B=\{(v, w, v, \ldots, w),(w, v, w, \ldots, v) \mid\{v, w\} \in E\}$ is a basis for the kernel of $\partial: \mathrm{MC}_{k, k}(G) \longrightarrow \mathrm{MC}_{k-1, k}(G)$: clearly $B \subseteq \operatorname{ker}(\partial)$, and no linear combinations of other generators of $\mathrm{MC}_{k, k}$ can lie in the kernel, else G has a C_{3} or C_{4} as a subgraph.

MAGNITUDE HOMOLOGY OF OUTERPLANAR GRAPHS

Definition

A graph G is said to be outerplanar if G is planar and has a planar drawing in which each vertex lies on an outer face of G.

- Such graphs can be constructed from a collection of cycle graphs by gluing along single edges or vertices.

MAGNITUDE HOMOLOGY GROUPS OF EVEN CYCLE

GRAPHS

Theorem (Gu)

Fix an integer $m \geq 3$. The magnitude homology of the cycle graph $C_{2 m}$ is described as follows.
(1) All groups $\mathrm{MH}_{k, \ell}\left(C_{2 m}\right)$ are torsion-free.
(2) Define a function $T: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ as
(1) $T(k, \ell)=0$ if $k<0$ or $\ell<0$;
(2) $T(0,0)=2 m, T(1,1)=4 m$;
(3) $T(k, \ell)=\max \{T(k-1, \ell-1), T(k-2, \ell-m)\}$ for

$$
(k, \ell) \neq(0,0),(1,1) .
$$

Then, $\operatorname{rank}\left(\mathrm{MH}_{k, \ell}\left(C_{2 m}\right)\right)=T(k, \ell)$.

MAGNITUDE HOMOLOGY GROUPS OF EVEN CYCLE

 GRAPHS| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 8 | | | | | | | | | | |
| 1 | | 16 | | | | | | | | | |
| 2 | | | 16 | | | | | | | | |
| 3 | | | | 16 | | | | | | | |
| 4 | | | 8 | | 16 | | | | | | |
| 5 | | | | 16 | | 16 | | | | | |
| 6 | | | | | 16 | | 16 | | | | |
| 7 | | | | | | 16 | | 16 | | | |
| 8 | | | | | 8 | | 16 | | 16 | | |
| 9 | | | | | | 16 | | 16 | | 16 | |
| 10 | | | | | | | 16 | | 16 | | 16 |

The ranks of the torsion-free magnitude homology groups of the cycle graph C_{8} (Hepworth, Willerton, Gu).

MAGNITUDE HOMOLOGY OF OUTERPLANAR GRAPHS

Theorem (S.-Summers)

Let G be an outer planar graph with S components C_{4}, and R component cycles $C_{2 m}$, constructed using edge-gluings only, $m \geq 3$. Let $S_{i, j}^{m}$ denote the rank of the $\mathrm{MH}(\mathrm{G})$ in the $j^{\text {th }}$ entry of the $i^{t h}$ diagonal, that is, $S_{i, j}^{m}=\operatorname{rank}\left(\mathrm{MH}_{2(i-1)+(j-1), m(i-1)+(j-1)}(G)\right)$. Then, $\mathrm{MH}_{k, \ell}(G)$ are all trivial except for the groups on mentioned diagonals, and these satisfy for $i>1$

$$
\begin{aligned}
& \operatorname{rank}\left(S_{1, j}^{m}\right)= \begin{cases}2 m R+4 S-2(R+S-1) & j=1 \\
4 m R+4 j S-2(R+S-1) & j>1\end{cases} \\
& \operatorname{rank}\left(S_{i, j}^{m}\right)= \begin{cases}2 m R+4 S-2(R+S-1) & j=1 \\
4 m R-2(R+S-1) & j>1\end{cases}
\end{aligned}
$$

FUTURE WORK

- Compute magnitude homology groups for all outerplanar graphs
- Apply algebraic Morse theory to compute magnitude homology groups for other families of graphs.
- Magnitude and magnitude homology are defined for enriched categories; investigate torsion in other settings.
- Are there families of links whose Khovanov complex is particularly amenable to the methods of algebraic Morse theory?
- Investigate possible relationships between geodesics in a graph and permissible types of torsion.

Thanks!

