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graphs as metric spaces

Definition
A graph G = (V ,E ) is a finite collection of vertices and edges (unordered
pairs of vertices) with no loops and no multiple edges.
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Assigning unit length to each edge, a graph becomes a metric space
with d(x , y) = length of a shortest path joining x and y .
E.g. d(a1, a5) = 2, d(a0, a3) = 3 while d(bi , bj) = δij .
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magnitude power series of a graph

Definition (Leinster)
Let G be a graph with (ordered) vertex set V = {v1, v2, . . . , vn}. The
magnitude #G = #(q) of a graph G is the sum of the entries of the
matrix Z−1

G (q), where

ZG (q) =


qd(v1,v1) qd(v1,v2) . . . qd(v1,vn)

qd(v2,v1)
. . . qd(v2,vn)

...
...

qd(vn,v1) qd(vn,v2) . . . qd(vn,vn)



Observation (Leinster): ZG (0) = I , so det(ZG (q)) is invertible in Z[[q]].
Hence #(G )(q) is a power series in q with integral coefficients.
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magnitude of complete and icosahedral
graphs

#Kn(q) =
∞∑
ℓ=0

n(1 − n)ℓqℓ

#G (q) = 12 − 60q + 240q2 − 912q3 + · · ·
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properties of magnitude

Magnitude is a generalization of cardinality of sets to graphs:

Theorem (Leinster)
Let G and H be any graphs. Then, #(G2H) = #(G ) ·#(H)

Theorem (Leinster)
Let (G ;H1,H2) be a projecting decomposition of a graph G . Then,
#(G ) = #(H1) + #(H2)−#(H1 ∩ H2).

You might be familier with the fact that alternating sum formulas are often
a good starting point for categorification: it is an approach used to lift
Jones (Kauffman bracket) polynomial to Khovanov homology.
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categorifying magnitude by hepworth and
willerton

Theorem (Leinster)

Let G be a graph. Then, the coefficient of qℓ in #G (q) is given by

[#G (q)]qℓ =
∞∑
k=0

(−1)k |{x = (x0, x1, . . . , xk) | xi ̸= xi+1, ℓ(x) = ℓ}|.

For each ℓ ≥ 0 define a chain complex (MC∗,ℓ(G )) as follows:

Chain groups: MCk,ℓ(G ) = Z ⟨ x = (x0, x1, . . . , xk) | ℓ(x) = ℓ ⟩

Differential: ∂ : MCk,ℓ(G ) → MCk−1,ℓ(G ) ∂ =
k−1∑
i=1

(−1)i∂i

∂i (x0, x1, . . . , xk) =

{
(x0, . . . , x̂i , . . . , xk) if ℓ(x0, · · · , x̂i , · · · , xk) = ℓ

0 otherwise.
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magnitude homology

Theorem (Hepworth, Willerton)
The magnitude homology of a graph G is the bigraded abelian group
MH(G ) given in bigrading (k, ℓ) by MHk,ℓ(G ) = Hk(MC∗,ℓ). Magnitude
homology is an invariant of graphs with graded Euler characteristic the
magnitude power series.

χq(MC∗,∗(G )) =
∑
ℓ≥0

∑
k≥0

(−1)k rank(MHk,ℓ(G ))

 · qℓ

=
∑
ℓ≥0

∑
k≥0

(−1)k rank(MCk,ℓ(G ))

 · qℓ

= #G (q).
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lifting properties of magnitude to magnitude
homology

Theorem (Hepworth, Willerton)
Let G and H be any graphs. Then, magnitude homology groups satisfy a
split exact sequence

0 → MH∗,∗(G )⊗MH∗,∗(H) → MH∗,∗(G2H) →

→ TorZ1 (MH∗+1,∗(G ),MH∗,∗(H)) → 0

Theorem (Hepworth, Willerton)
Let (G ;H1,H2) be a projecting decomposition of a graph G . Then,
magnitude homology groups satisfy a split exact sequence

0 → MH∗,∗(H1 ∩ H2) → MH∗,∗(H1)⊕MH∗,∗(H2) → MH∗,∗(G ) → 0.
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torsion in magnitude homology

Hundreds of computations in Sage, inspired Hepworth and Willerton to
conjecture magnitude homology to be torsion free for every graph.

Theorem (Kaneta, Yohsinaga)
The following graph has Z2 torsion:
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the kaneta-yoshinaga construction

Definition (Kaneta-Yoshinaga graphs)

Let K be a simplicial complex, P(K ) be the face poset of K , and let P̂(K )
be the poset obtained by augmenting P(K ) with unique minimal and
maximal elements 0̂ and 1̂, respectively. The Kaneta-Yoshinaga graph
associated to K is the graph G (K ) obtained as the underlying graph of the
Hasse diagram of P̂(K ).

E.g.

0 1

2

K

0̂

[0] [1] [2]

[0, 1] [0, 2] [1, 2]

1̂

G (K )
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singular homology and magnitude homology

Theorem (Kaneta, Yohsinaga)

Let K be a triangulation of a manifold M and let ℓ = d(0̂, 1̂) in P̂(K ). For
each k ≥ 1 there is an embedding,

H̃k−2(M) ↪→ MHk,ℓ(G (K )).

Observation
Let K be a triangulation of an m-dimensional manifold M. If K contains a
single m-simplex, we obtain embeddings

H̃k−2(M) ↪→ MHk,m+1(G (K ))

Otherwise, we obtain embeddings H̃k−2(M) ↪→ MHk,m+2(G (K )).
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Z2 torsion on the second diagonal of
magnitude homology

Theorem (S.-Summers)
For any odd integer k ≥ 3, there is a graph G such that MHk,k+1(G )
contains a subgroup isomorphic to Z2.

Proof idea:
Take K to be a triangulation of RPk−1

Use the embedding

H̃k−2(RPk−1) ↪→ MHk,k+1(G (K ))

described on the previous slide.
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Zpr torsion in magnitude homology

Definition (Generalized lens space)

Let S2n+1 = {(z0, z1, . . . , zn) ∈ Cn+1 :
∑n

i=0 |zi |2 = 1} be the unit sphere
in Cn+1. Let p, q1, q2, . . . , qn be integers with gcd(p, qi ) = 1 for each
1 ≤ i ≤ n. Consider the action of Zp on S2n+1 defined for each g ∈ Zp by

g · (z0, z1, . . . , zn) = (z0e
2πig
p , z1e

2πigq1
p , z2e

2πigq2
p , . . . , zne

2πigqn
p ).

The lens space L(p, q1, q2, . . . , qn) is the quotient space S2n+1/Zp.

Theorem (S.-Summers)
For each prime p and positive integer r , there is a graph G with Zpr torsion
in MH(G ). More specifically, for integers n, r ≥ 1 and each prime p, there
is a graph G such that MH3,2n+3(G ) contains Zpr torsion.

Proof idea: L(pr , q1, q2, . . . , qn) is a triangulable (2n + 1)-dimensional
manifold with fundamental group isomorphic to Zpr .
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torsion in magnitude homology of non-ky
graphs

Theorem (S.-Summers)
There is a graph G , not obtained from a triangulation via the
Kaneta-Yoshinaga construction, with torsion of order two in magnitude
homology:

v w

x

y

z
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families of graphs with torsion in magnitude
homology

Definition (Pachner)
Let K be a triangulation of an m-manifold M. Let A ⊂ K be a subcomplex
of dimension m, and let φ : A → A′ ⊂ ∂∆m+1 be a simplicial isomorphism.
The Pachner move associated to the triple (K ,A, φ) is the adjunction space

PφK := (K − A) ⊔φ (∂∆m+1 − A′).

P1

P−1
1

P2

P−1
2

Pachner moves on simplicial complexes of dimension 2.
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families of graphs with torsion in magnitude
homology

Theorem (S.-Summers)

Let K and K ′ be triangulations of a manifold M related by a finite
sequence of Pachner moves. For each k ≥ 1, both MHk,∗(G (K )) and
MHk,∗(G (K ′)) have a subgroup isomorphic to H̃k−2(M).

Theorem
Let k ≥ 3 be an integer. There exist infinitely many distinct classes of
graphs whose magnitude homology contains Z2 torsion in bigrading
(k, k + 1).

Proof idea: Form a nested sequence of triangulations of RPk−1 by repeated
application of Pachner moves, then appeal to the Kaneta-Yoshinaga
embedding.
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families of graphs with torsion in magnitude
homology

Theorem (S.-Summers)
Let p be a prime and n,m ≥ 1 integers. There exist infinitely many distinct
isomorphism classes of graphs whose magnitude homology contains Zpr

torsion in bigrading (3, 2n + 3).

Proof idea: Form a nested sequence of triangulations of generalized lens
spaces L(pr , q1, q2, . . . , qn) by repeated application of Pachner moves, then
appeal to the Kaneta-Yoshinaga embedding.
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families of graphs with torsion in magnitude
homology

Theorem (S.-Summers)
Let M be any finitely generated finite abelian group. Then, there exists a
graph G whose magnitude homology MH(G ) contains a subgroup
isomorphic to M.

Proof idea: By the fundamental theorem of finitely generated abelian
groups, M ∼= Zr ⊕ Zp

r1
1
⊕ Zp

r2
2
⊕ · · · ⊕ Zprmm . The homology groups of a

connected sum of manifolds is isomorphic to the direct sum of their
respective homology groups. Therefore,

H1(L(p
r1 , 1) #L(pr2 , 1) # · · ·# L(prm , 1)) ∼= Zp

r1
1
⊕ Zp

r2
2
⊕ · · · ⊕ Zprmm .

Let K be a triangulation of L(pr1 , 1) #L(pr2 , 1) # · · ·# L(prm , 1), then
appeal to the Kaneta-Yoshinaga embedding.
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the main diagonal of magnitude homology

Theorem (S.-Summers)
Let G be a graph with vertex set V and edge set E . If G has no 3- or
4-cycles, then the first diagonal in the magnitude homology of G satisfies

MHk,k(G ) ∼=
{

Z|V | k = 0,
Z2|E | k > 0.

Proof idea: Show B = {(v ,w , v , . . . ,w), (w , v ,w , . . . , v) | {v ,w} ∈ E} is
a basis for the kernel of ∂ : MCk,k(G ) −→ MCk−1,k(G ): clearly
B ⊆ ker(∂), and no linear combinations of other generators of MCk,k can
lie in the kernel, else G has a C3 or C4 as a subgraph.
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Magnitude homology of outerplanar graphs

Definition
A graph G is said to be outerplanar if G is planar and has a planar drawing
in which each vertex lies on an outer face of G .

Such graphs can be constructed from a collection of cycle graphs by
gluing along single edges or vertices.
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magnitude homology groups of even cycle
graphs

Theorem (Gu)
Fix an integer m ≥ 3. The magnitude homology of the cycle graph C2m is
described as follows.
(1) All groups MHk,ℓ(C2m) are torsion-free.
(2) Define a function T : Z× Z → Z as

1 T (k , ℓ) = 0 if k < 0 or ℓ < 0;
2 T (0, 0) = 2m,T (1, 1) = 4m;
3 T (k , ℓ) = max{T (k − 1, ℓ− 1),T (k − 2, ℓ−m)} for

(k, ℓ) ̸= (0, 0), (1, 1).

Then, rank(MHk,ℓ(C2m)) = T (k , ℓ).
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magnitude homology groups of even cycle
graphs

0 1 2 3 4 5 6 7 8 9 10
0 8
1 16
2 16
3 16
4 8 16
5 16 16
6 16 16
7 16 16
8 8 16 16
9 16 16 16
10 16 16 16

The ranks of the torsion-free magnitude homology groups of the cycle
graph C8 (Hepworth, Willerton, Gu).
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magnitude homology of outerplanar graphs

Theorem (S.-Summers)
Let G be an outer planar graph with S components C4, and R component
cycles C2m, constructed using edge-gluings only, m ≥ 3. Let Sm

i ,j denote the
rank of the MH(G ) in the j th entry of the i th diagonal, that is,
Sm
i ,j = rank(MH2(i−1)+(j−1),m(i−1)+(j−1)(G )). Then, MHk,ℓ(G ) are all trivial

except for the groups on mentioned diagonals, and these satisfy for i > 1

rank(Sm
1,j) =

{
2mR + 4S − 2(R + S − 1) j = 1,
4mR + 4jS − 2(R + S − 1) j > 1,

rank(Sm
i ,j) =

{
2mR + 4S − 2(R + S − 1) j = 1,
4mR − 2(R + S − 1) j > 1.
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future work

Compute magnitude homology groups for all outerplanar graphs

Apply algebraic Morse theory to compute magnitude homology groups
for other families of graphs.

Magnitude and magnitude homology are defined for enriched
categories; investigate torsion in other settings.

Are there families of links whose Khovanov complex is particularly
amenable to the methods of algebraic Morse theory?

Investigate possible relationships between geodesics in a graph and
permissible types of torsion.
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Thanks!
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